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Abstract 32 

Our study evaluates the impacts of an alternate snow cover fraction (SCF) parameterization on 33 

snow simulation in the Canadian Land Surface Scheme Including Biogeochemical Cycles 34 

(CLASSIC). Three reanalysis-based meteorological datasets are used to drive the model to 35 

account for uncertainties in the forcing data. While the default parameterization assumes a 36 

simple linear relationship between SCF and snow depth with no dependence on topography, the 37 

alternate parameterization accounts for the topographic effects of sub-grid terrain on SCF. We 38 

show that the alternate parameterization improves SCF simulated in CLASSIC during winter and 39 

spring in mountainous areas for all three choices of meteorological datasets. Annual mean bias, 40 

unbiased root mean squared area, and correlation improve by 75 %, 32 %, and 7 % when 41 

evaluated with MODIS SCF observations over the Northern Hemisphere. We also demonstrate 42 

that the improvements to simulated SCF lead to further improvements in variables related to 43 

surface radiation, energy fluxes, and the water cycle. Finally, we link relative biases in the 44 

meteorological forcing data to differences in simulated snow water equivalent and SCF. 45 

Assessment of simulations with different combinations of SCF parameterizations and 46 

meteorological datasets reveals the large impact of meteorological forcing on snow simulation in 47 

CLASSIC. Two out of the three meteorological datasets were bias-adjusted using observation-48 

based datasets. However, simulations forced by the dataset without bias correction outperform 49 

relative to simulations forced by datasets with bias correction, suggesting that there are large 50 

uncertainties in the observation-based datasets and/or methods used for bias correction. This 51 

study underscores the importance of accounting for topographic effects of sub-grid terrain and 52 

accurate meteorological forcing on snow simulation in land surface models.      53 

 54 

1. Introduction 55 

Snow cover exists from six to nine months of the year at the high latitudes and high elevations of 56 

mountainous regions. The seasonal transition from snow covered to snow free conditions can 57 

have a large impact on the stability of permafrost, the length of the active growing season, and 58 

surface water and energy balances due to the much higher albedo of snow cover than other land 59 

surfaces (e.g., Myneni et al., 1997; Betts et al., 1998; Osterkamp and Romanovsky, 1999; 60 

Frolking et al., 2006). Snow cover plays an important role in the regional and global climate 61 

system because of the snow-albedo feedback mechanism (Fletcher et al., 2009; Qu and Hall, 62 

2013). Any uncertainty in the magnitude of this climate feedback decreases our ability to reduce 63 

uncertainty in climate sensitivity (Roe and Baker, 2007). Therefore accurate simulation of snow 64 

cover is crucial for future climate predictions in climate and Earth system models (ESMs).  65 

Snow depth (SND) varies at scales from about 10 to 100 m as a result of heterogeneity in land 66 

cover, terrain, and meteorological conditions (Liston 2004), while a typical ESM grid cell size is 67 

about 100 km or more. Most land surface models (LSMs) explicitly treat only some of this 68 

heterogeneity, for example by accounting for different land cover types within a grid cell 69 

(Verseghy et al., 2017). Snow cover fraction (SCF) parameterizations are commonly used to 70 

account for unresolved (sub-grid scale) snow depth variability. However, most models from the 71 
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Coupled Model Intercomparison Project (CMIP) phase 5 (Taylor et al., 2012) and phase 6 72 

(Eyring et al., 2016) have been found to overestimate SCF in mountainous regions, often with a 73 

corresponding cold bias in surface air temperature (Su et al., 2013; Lalande et al., 2021). These 74 

biases are also present in the most recent Canadian Earth System Models (CanESM5, Swart et 75 

al., 2019; Sigmond et al., 2023) and the latest version of its land surface component, the 76 

Canadian Land Surface Scheme Including biogeochemical Cycles (CLASSIC, Melton et al., 77 

2020; Seiler et al., 2021). The SCF overestimation has been attributed to many potential causes, 78 

such as too much precipitation and/or overly simplistic SCF parameterizations in ESMs (Lalande 79 

et al., 2021; Miao et al., 2022).  80 

Most SCF parameterizations in LSMs estimate SCF based on its relationship with SND or snow 81 

water equivalent (SWE) (e.g., Marshall and Oglesby,1994; Douville et al., 1995; Yang et al., 82 

1997; Roesch et al., 2001; Niu and Yang, 2007; Swenson and Lawrence, 2012; Lalande et al., 83 

2023). Some of these parameterizations also account for topographic effects of sub-grid terrain 84 

on SCF (e.g., Douville et al., 1995; Roesch et al., 2001; Swenson and Lawrence, 2012; Lalande 85 

et al., 2023), which have been demonstrated to be crucial in mountainous regions (Miao et al., 86 

2022). In CLASSIC, the default parameterization historically used is a linear relationship 87 

between SCF and SND with no dependence on topography. A grid cell is considered fully snow-88 

covered when the diagnosed SND reaches 0.1 m. Melton et al. (2019) investigated the impact of 89 

two alternative SCF parameterizations on SCF and permafrost area simulated by CLASSIC. The 90 

first was to change the SCF-SND linear relationship to a hyperbolic tangent function (Yang et al., 91 

1997), and the second was to change the SCF-SND linear form to an exponential form (Brown et 92 

al., 2003). Both alternative SCF parameterizations worsened performance in terms of the global 93 

permafrost area and active layer thickness, neither was implemented.  94 

Here we consider another option previously developed by Swenson and Lawrence (2012). Their 95 

parameterization (hereafter referred as SL12) qualitatively reproduces the hysteresis present in 96 

the observational data (SCF-SND relationship) between snow accumulation and ablation seasons 97 

while also accounting for the topographic effects of sub-grid terrain. The SL12 parameterization 98 

was implemented in the Community Land Model version 5 (CLM5), the land surface component 99 

in the Community Earth System Model version 2 (CESM2). Notably, CESM2 was one of the 100 

models that showed the lowest surface air temperature and SCF biases over the High 101 

Mountainous Asia (HMA) region among the CMIP6 models (Lalande et al., 2021). Based on 102 

these results, the SL12 parameterization was implemented in the CLASSIC model and here we 103 

evaluate the impact of this change on SCF, SWE, and other snow-related land surface variables. 104 

Our evaluation is based on offline CLASSIC simulations forced by historical temperature and 105 

precipitation from reanalyses. Because there is uncertainty in these historical values, especially 106 

in mountainous regions, we use three different reanalysis-based meteorological datasets to drive 107 

CLASSIC. For each meteorological forcing datasets we perform two CLASSIC simulations, one 108 

with the default SCF parameterization and one with the SL12 parameterization. The two 109 

parameterization schemes are compared with observed SCF and SWE, and the other snow-110 

related land surface variables are evaluated using the Automated Model Benchmarking R 111 

package (AMBER, Seiler et al., 2021). The remainder of this paper is organized as follows. In 112 

Section 2, we describe the CLASSIC model, the two SCF parameterizations, the forcing data, 113 
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and model setup. In Section 3, we describe the observation data and our evaluation methods. 114 

Results are detailed in Section 4 and discussion points in Section 5.  We present conclusions in 115 

Section 6.  116 

 117 

2. CLASSIC model, SCF parameterization methods, and model setup 118 

2.1 CLASSIC description and snow model characteristics 119 

CLASSIC is an open-source community land model that is designed to address research 120 

questions that explore the role of the land surface in the climate system. It is the successor to the 121 

coupled modelling framework based on the Canadian Land Surface Scheme (CLASS; Verseghy, 122 

1991; 1993) and the Canadian Terrestrial Ecosystem Model (CTEM; Arora and Boer, 2005; 123 

Melton and Arora, 2016). The physics and biogeochemistry modules of CLASSIC are based on 124 

CLASS and CTEM models, respectively. Older versions of CLASSIC (under the name CLASS-125 

CTEM) have served as the land component in the family of Canadian Earth System Models 126 

(CanESM) which contribute to the CMIPs (Swart et al., 2019). 127 

The physics component of CLASSIC models energy and water balances separately for the 128 

vegetation canopy, snow, and soil (Verseghy, 1991; Melton et al., 2019). As a first-order 129 

treatment of subgrid-scale heterogeneity, each grid cell is divided into four sub-areas, consisting 130 

of vegetated and bare soil areas, each with and without snow cover. Snow is represented as single 131 

layer, which includes canopy snow processes such as interception, unloading, sublimation and 132 

melt (Bartlett et al., 2006; Verseghy et al., 2017). The grid cell albedo is computed as a weighted 133 

mean based on the fractional coverages for each surface type. In previous versions of CLASSIC, 134 

the snow albedo decreases exponentially with time from fresh snow values according to 135 

empirically derived functions (Verseghy, 1991). In more recent versions, a new physics-based 136 

snow albedo parameterization is available, which accounts for contributions of black carbon 137 

snow mixing ratio and the effective snow grain size on snow albedo (Namazi et al., 2015). The 138 

new snow albedo scheme is the default scheme in CanESM models and is used in this study. 139 

Further details on the CLASSIC model can be found in Melton et al. (2020). 140 

 141 

2.2 SCF parameterization methods 142 

2.2.1 The current default SCF parameterization 143 

In CLASSIC, the thicknesses of all vertical layers are recommended to be greater than 0.1 m to 144 

avoid numerical instability problems. Therefore, the local SND over the snow-covered portion of 145 

a grid cell is not allowed to decrease below this threshold (0.1 m), instead, the fractional snow 146 

cover decreases to conserve snow mass. Snow cover is considered complete when SND reaches 147 

0.1 m; when SND < 0.1 m, SCF is computed as SCF = SND/0.1, and SND is reset to 0.1 m. 148 

Hereafter we refer to the current default SCF parameterization as the Control (CTL) 149 

parameterization. Previous analysis has shown that increasing or decreasing this threshold value 150 

by 50 % has little effect on the simulated SWE or SCF (Verseghy et al., 2017).  151 
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2.2.2 The SL12 SCF parameterization 152 

Based on snow cover datasets at relatively high spatial and temporal resolution, Swenson and 153 

Lawrence (2012) demonstrated that the relationship between SCF and SND depends not only on 154 

the amount of snow, but also on month of the year. This dependence is hypothesized to stem 155 

from differences in how accumulation versus ablation processes alter the correlation of the two 156 

variables. Based on this they proposed separate formulations for snow accumulation and melt 157 

periods as follows.  158 

During snow accumulation: 159 

𝑓𝑠𝑛𝑜
𝑛 = 1 − ((1 − tanh(𝑘𝑎𝑐𝑐∆𝑊))(1 − 𝑓𝑠𝑛𝑜

𝑛−1)                                                (1) 160 

Where 𝑓𝑠𝑛𝑜
𝑛  and 𝑓𝑠𝑛𝑜

𝑛−1 are SCF from the current and the previous time step, kacc is a scale 161 

parameter (mm-1) and ΔW (mm) is the amount of new snow that falls within the current time 162 

step. Note Eq. (1) is the formulation used in CLM5 code (and implemented in CLASSIC), which 163 

is different from that in Swenson and Lawrence (2012). In most LSMs including CLASSIC, 164 

SND is diagnostically computed through snow water equivalent (W in Eq. (1)-(4)) and snow 165 

density (ρs): SND=W/ρs. Swenson and Lawrence (2012, their Fig. 7) illustrated that the rate of 166 

SCF increase with SND depends on the kacc parameter, such that a larger kacc parameter would 167 

result in faster SCF increase with SND. The default value from Swenson and Lawrence 2012) is 168 

0.1 mm-1, which is also used in our study. The impact of this choice will be discussed in Section 169 

5.2. 170 

During snowmelt: 171 

𝑓𝑠𝑛𝑜 = 1 − [
1

𝜋
acos (2

𝑊

𝑊𝑚𝑎𝑥
− 1)]

𝑁𝑚𝑒𝑙𝑡

                                                                (2) 172 

𝑁𝑚𝑒𝑙𝑡 =
200

𝑚𝑎𝑥(10,   𝜎𝑡𝑜𝑝𝑜)
                                                                                          (3) 173 

𝑊𝑚𝑎𝑥 =
𝑊

0.5(𝑐𝑜𝑠(𝜋(1−𝑓𝑠𝑛𝑜)
1

𝑁𝑚𝑒𝑙𝑡)+1)

                                                                        (4) 174 

where the W and Wmax are the current and the maximum accumulated snow water equivalent 175 

(mm), and Nmelt (unitless) is a parameter determined from the standard deviation of topography, 176 

σtopo (m). Eq. (4) is used to reconcile the relationship during periods of mixed accumulation and 177 

melt. Eq. (2) and Eq. (3) suggest that the rate of SCF decrease with SND depends on the Nmelt 178 

parameter, such that SCF decreases faster with (normalized) SND in mountainous areas (small 179 

Nmelt) than flat areas (large Nmelt, Fig.9 in Swenson and Lawrence, 2012). 180 

In our implementation we do not distinguish the use of these two formulations by time of year 181 

but based on whether SWE is increasing or decreasing with respect to the previous time step 182 

(Wang et al., 2025). To avoid the numerical instability issues mentioned above (Section 2.2.1), 183 

the SL12 parameterization is only used when the local SND over the snow-covered portion of a 184 

grid cell is greater than 0.1 m. When SND < 0.1 m, SCF is computed in the same way as in the 185 

default parameterization. Therefore, the largest difference in SCF between the default and SL12 186 
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parameterization as implemented in CLASSIC is expected in mountainous areas during the melt 187 

period. In these regions and times the topographic effects of sub-grid terrain is accounted for in 188 

SL12 but not in CTL.  189 

 190 

Figure1. (a) The standard deviation of elevation over the whole model domain; (b) the standard deviation 191 
of elevation in the HMA region (red rectangle box in (a)); (c) HMA mean snow depth during the main 192 
snow season (Sep – May) over the 2005-2014 period. Labels in (b) and (c) represent: Tibetan Plateau 193 
(TP), interior TP (ITP), southeastern TP (SETP), Tian Shan (TS), Hindu Kush–Karakoram (HK), and 194 
western Himalayas (HM). 195 

 196 

2.3 Forcing data and simulation setup  197 

The modeling domain chosen for this study is a global land only latitude-longitude grid at 1º 198 

resolution (Fig. 1a). Three gridded meteorological datasets are used to drive CLASSIC in this 199 

study: CRUJRA, ERA5, and GSWP3-W5E5, described below. CRUJRA is regularly used to 200 

drive LSMs participating the annual Global Carbon Project which provides analysis of the land 201 

carbon sink (Friedlingstein et al., 2025). It was constructed by regridding data from the Japanese 202 

reanalysis (JRA, Kobayashi et al., 2015) and adjusting where possible to align with the Climatic 203 

Research Unit (CRU) TS4 data (Harris, 2020; 2023). The blended product spanning January 204 
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1901 to December 2020 has the 6-hourly temporal resolution of the JRA reanalysis product but 205 

monthly means adjusted to match the CRU data at 0.5º spatial resolution.  206 

ERA5 is the fifth generation European Centre for Medium-Range Weather Forecasts atmospheric 207 

reanalysis of the global climate covering the period from January 1940 to present (Hersbach et 208 

al., 2020). ERA5 data are available at hourly temporal and 0.25º spatial resolution. Currently it 209 

has the highest spatial and temporal resolutions available among all global reanalysis products. 210 

GSWP3-W5E5 (here after referred as GSWP3W5) is a combination of two datasets: GSWP3 211 

v1.09 (Dirmeyer et al., 2006; Kim 2017) from 1901-1978 and W5E5 v2.0 (Cucchi et al. 2020; 212 

Lange et al. 2021) from 1979-2019. It is one of the forcings used in the Inter-Sectoral Impact 213 

Model Intercomparison Project (ISIMIP). The GSWP3 dataset is a dynamically downscaled 214 

version of the Twentieth Century Reanalysis version 2 (20CRv2; Compo et al. 2011), bias-215 

corrected using three separate observational data sets (see Kim 2017 for details). The W5E5 216 

dataset is an interpolated version of ERA5 reanalysis, bias-corrected using CRU TS4.  W5E5 217 

also provides a second set of precipitation forcing data, bias-corrected with observations from the 218 

Global Precipitation Climatology Project (GPCP; Adler et al., 2003). The GPCP dataset includes 219 

around 3–4 times as many precipitation stations as CRU, thus we use this version of the 220 

precipitation forcing in our experiments. The GSWP3W5 data are available at daily temporal and 221 

0.5º spatial resolution.  222 

The three meteorological forcing datasets are regridded using the first order conservative 223 

remapping method to the 1º model grid via Climate Data Operators. They are disaggregated on 224 

the fly within CLASSIC into half-hourly data following the methodology of Melton and Arora 225 

(2016) for the following seven meteorological variables that are used to force the model: 2 m air 226 

temperature, total precipitation, specific humidity, downward solar radiation flux, downward 227 

longwave radiation flux, surface pressure, and wind speed. In CLASSIC, the phase of 228 

precipitation is determined by a threshold surface air temperature according to three possible 229 

options described in (Bartlett et al., 2006). Jennings et al. (2018) showed that the snowfall-230 

rainfall transition temperature varied from -0.4°C to 2.4°C across the NH. Based on this, we used 231 

the option where the partitioning between rainfall and snowfall varies linearly between all 232 

rainfall at temperatures above 2º C, and all snowfall at temperatures below 0°C.   233 

The plant functional types used in CLASSIC are derived from the Climate Change Initiative land 234 

cover product produced by the European Space Agency (Wang et al., 2023). The atmospheric 235 

CO2 concentration values are provided by the Global Carbon Project (Le Quere et al., 2018). The 236 

soil texture information consists of the percentage of sand, clay, and organic matter and is 237 

derived from the SoilGrids250m dataset (Hengl et al., 2017), and the permeable soil depth is 238 

based on Shangguan et al. (2017).  239 

CLASSIC simulations use either the CTL or the SL12 parameterization forced by the CRUJRA, 240 

ERA5, and GSWP3W5 respectively, yielding six simulations over the historical period. We refer 241 

to these simulations hereafter as: CRUJRA-CTL, CRUJRA-SL12, ERA5-CTL, ERA5-SL12, 242 

GSWP3W5-CTL, and GSWP3W5-SL12. Pre-industrial spin-up simulations were performed to 243 

allow the model to equilibrate carbon fluxes to conditions corresponding to the first year of the 244 
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forcing data. During spin-up, we loop climate data from the earliest 25 years available for 245 

CRUJRA/ERA5 and 100 years of spin-up data for GSWP3W5 (Lange et al., 2022), and hold 246 

atmospheric CO2 concentrations at the pre-industrial level (286.46 ppm). The transient runs use 247 

time-varying CO2 concentrations and climate. The period from 2005 to 2014 is selected for 248 

analyzing the simulated results, when there is overlap with the three observational SCF datasets 249 

(see Section 3.1).  250 

 251 

3. Observation data and evaluation methods 252 

 253 

3.1 Study area and evaluation methods 254 

Our analysis will include evaluation of SCF, SWE, meteorological forcings, and other land 255 

surface variables. Assessment of SCF, SWE, and meteorological forcings will focus on the 256 

mountain (σtopo > 200 m) and flat (σtopo <= 200 m) regions over the Northern Hemisphere (NH), 257 

and sub-regions of North America (NA), Eurasia (EA), and HMA. Classification of mountain 258 

and flat regions is based on standard deviation of the sub-grid terrain from the ETOPO1 259 

elevation data at 1 arc-minute resolution (NOAA, 2009). In the SL12 parameterization, the 260 

topographic effects of sub-grid terrain are considered via a Nmelt parameter (Eq. (2)), which is 261 

inversely related to σtopo (Eq. (3)). Figure 1a shows that at 1º resolution, the magnitudes of σtopo 262 

are around 200 m – 600 m for most of the mountainous regions except for the HMA and the 263 

Andes where the magnitude of σtopo can reach 1200 m or more.  264 

The HMA region is one of the most complex topographic areas on Earth, with very high sub-grid 265 

scale variability (Fig. 1b). It surrounds the Tibetan Plateau (TP), with an average elevation of 266 

4000 m (Du and Qingsong, 2000). Considering the large SCF biases found in CanESM5 and 267 

other CMIP models in this region (e.g. Lalande et al., 2021), we will present results for HMA 268 

separately. Different regions of HMA exhibit different spatiotemporal patterns in snowfall and 269 

SWE due to its unique topography (Yao et al., 2012; Bolch et al., 2019). According to the High 270 

Mountainous Asia Snow Reanalysis (HMASR) dataset (see Section 3.2), during Sep. to May 271 

over 2005 to 2014 period, SND is only a few centimeters over most of the interior TP, with 272 

relatively deeper snow in southeastern TP (Fig. 1c). Deeper snow (SND > 0.2 m) is concentrated 273 

at the high elevations of the mountains where σtopo is usually greater than 500 m, such as Tian 274 

Shan, Hindu Kush–Karakoram, and western Himalayas (Fig. 1c). 275 

Gridded data are regridded using the first order conservative remapping method to the 1º 276 

latitude-longitude grid. In addition to the SCF and SWE data detailed below, the monthly air 277 

temperature and precipitation from CRU TS4 (Harris et al., 2020) are used as references to 278 

compare with the three meteorological forcing datasets. Evaluation metrics for SCF, SWE and 279 

meteorological forcing include the mean bias, unbiased root mean squared error (uRMSE) and 280 

Pearson correlation. The uRMSE is defined as the square root of the mean square error minus the 281 

squared bias: uRMSE = sqrt (RMSE2 - Bias2). Evaluation of other land surface variables is 282 

according to AMBER and detailed in Section 3.4. 283 
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3.2 SCF observations 284 

The monthly SCF was obtained from the Moderate Resolution Imaging Spectroradiometer 285 

(MODIS) /Terra snow cover monthly L3 0.05º Climate Modeling Grid product (MOD10CM, 286 

version 61). This dataset provides monthly mean SCF based on the clearest views of the surface 287 

from 28 – 31 days of MOD10C1 daily observations and are available from the National Snow 288 

and Ice Data Center (Hall and Riggs, 2021). To mitigate the uncertainties in the MODIS product 289 

due to frequent cloud cover or complex terrains, SCF from the Interactive Multisensor Snow and 290 

Ice Mapping System (IMS) produced by the U.S. National Ice Center (2008) was also used as a 291 

reference in our analysis. The IMS dataset consists of binary snow/no snow information on a 4 292 

km resolution polar stereographic projection grid (Helfrich et al. 2007). Though the binary 293 

format of this dataset is not ideal for SCF estimation, especially in areas around the snow line, 294 

SCF estimates from IMS are included because the resolution of our model is coarse (1º) and IMS 295 

data has been used to evaluate modelled SCF in previous studies (e.g. Wang et al., 2014; Orsolini 296 

et al., 2019). Daily IMS data were converted to monthly snow cover duration fraction (SCF = 297 

total number of days with snow cover in a month divided by the number of days in the month).  298 

Previous studies suggested that there were large uncertainties in the SCF data from MODIS and 299 

IMS datasets in the HMA region (Hao et al., 2019; Orsolini et al., 2019). Thus the daily SCF 300 

from the HMASR dataset (Liu et al., 2021a) is used as an additional reference for the HMA 301 

region in this study. HMASR is based on a Bayesian snow reanalysis framework with model-302 

based snow estimates refined through the assimilation of high resolution SCF data from MODIS 303 

(500 m) and Landsat (30 m) sensors (Liu et al., 2021b). The framework also accounts for a priori 304 

uncertainties in meteorological forcings and utilizes an ensemble approach (Margulis et al, 305 

2019). The dataset provides daily data of posterior snow estimates at ~500 m spatial resolution 306 

over the HMA region. Ensemble mean values of SCF and SND are used in this study. The 307 

method used for HMASR was best suited for seasonal snow characterization (Liu et al. (2021a), 308 

thus grid cells with semi-permanent snow and ice greater than 30% are masked out in our 309 

analysis. The monthly SCF data from MODIS, IMS, and HMASR over the 2005-2014 period are 310 

used to evaluate modelled SCF.  311 

 312 

3.3 SWE measurements 313 

As shown in Eq. (1) and Eq. (2) simulated SCF is calculated from SWE directly in the SL12 314 

parameterization, and from SND in the CTL parameterization (Section 2.2.1). Therefore, to 315 

better understand the sources of bias in simulated SCF, we also evaluate simulated SWE using 316 

snow course and airborne gamma SWE observations from Mortimer and Vionnet (2024) 317 

covering 1980 – 2014 (Fig. 2). Both types of in situ SWE information have previously been used 318 

to evaluate gridded products (e.g. Cho et al. 2019; Mortimer et al. 2020; Mudryk et al. 2025) and 319 

details of these data are described elsewhere (Mortimer et al. 2024, Mortimer and Vionnet 2025). 320 

Briefly, snow courses generally consist of multiple snow depth and density measurements 321 

collected along a predefined transect several hundred meters to several kilometers in length 322 

averaged together to obtain a single SWE value for each transect on a given date (WMO, 2018). 323 
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Airborne gamma SWE estimates are calculated by differencing snow-free and snow-covered 324 

measurements of gamma radiation collected along a 15-20 km long flight line with a 300 m wide 325 

footprint after accounting for background soil moisture (Carroll, 2001). Spatial distribution and 326 

measurement frequency of the observations varies by measurement method and jurisdiction (e.g. 327 

Fig. 2 in Mortimer and Vionnet, 2025). These measurements are better able to capture the larger-328 

scale average compared to single point observations and have been shown capable of discerning 329 

subtle differences in SWE products (Mortimer et al. 2022) and of ranking such products based on 330 

their relative performance (Mudryk et al. 2025). 331 

 332 

Figure 2. Distribution of in situ reference data. (a) Number of monthly 1°x1° grid cells with reference 333 
data during 1980-2014 (each monthly 1° grid with reference data is a data point), (b) Number of months 334 
during Nov-May 1980-2014 with reference observations by 1° grid. (c) Temporal distribution of raw in 335 
situ SWE observations. (d) Mean February-March reference SWE for grid cells with at least 5 months of 336 
data. Vertical lines in (a) and (c) indicate Nov-May period used in the analysis. 337 

To evaluate monthly model output with reference observations from a specific date, we first 338 

match reference SWE observations to the model grid estimate from the corresponding month. 339 

Next, from these matched data, we calculate the mean reference SWE for each month. If there 340 

were multiple reference SWE observations within the same product grid cell on the same date, 341 

they were averaged prior to calculating the monthly mean. Metrics were calculated separately for 342 

mountainous and flat regions (see definition below) for each month (all years pooled together), 343 

for each year (all months pooled together), and for the full time period (all years and months 344 

pooled together), and for each product grid (all years pooled together). The analysis is limited to 345 

non-zero values with SWE < 3000 mm in both the observation and model outputs, and to the 346 

months November through May. 347 

 348 
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3.4 Reference datasets used to evaluate land surface variables in AMBER 349 

Spatial and temporal variations of snow cover account for most of the variations in surface 350 

albedo due to its much higher reflectivity relative to underlying land surfaces. Changes in SCF 351 

thereby lead to changes in surface albedo, which in turn lead to changes in surface radiation and 352 

energy fluxes. To illustrate the impact of the SL12 parameterization on the simulated radiation, 353 

energy fluxes, and the water cycle in CLASSIC, we computed skill scores using the AMBER 354 

package (Seiler et al., 2021) for the global 1º simulations. AMBER assesses model performance 355 

against a collection of observation-based reference datasets based on five scores: bias (Sbias), 356 

root-mean-square-error (Srmse), phase (Sphase), interannual variability (Siav), and spatial 357 

distribution (Sdist). An overall score (Soverall) is calculated by averaging the five scores. The scores 358 

are dimensionless and on a scale from 0 to 1 where a higher value implies better model 359 

performance. Lower values are, however, not necessarily a product of poor model performance 360 

as the scores are also affected by uncertainties in the forcing and the reference data. Further 361 

details regarding the AMBER package as well as the skill score equations are presented in Seiler 362 

et al. (2021) and Seiler (2019). Table 1 shows the 21 reference datasets used in AMBER in this 363 

study, which contain information about seven variables relevant to the radiation, energy, and 364 

water cycle including net surface radiation (RNS), net surface shortwave radiation (RSS), net 365 

surface longwave radiation (RLS), surface albedo (ALBS), latent heat flux (HFLS), sensible heat 366 

flux (HFSS), and runoff (MRRO). These datasets include monthly mean values and more details 367 

can be found in Seiler et al. (2021). 368 

 369 

Table 1. Overview of the reference datasets used in AMBER, including the following variables: net 370 
surface radiation (RNS), net surface shortwave radiation (RSS), net surface longwave radiation (RLS), 371 
surface albedo (ALBS), latent heat flux (HFLS), sensible heat flux (HFSS), and runoff (MRRO). 372 

 373 

 374 

4. Results 375 

Dataset Variables Method Period References 
CERES ALBS, RSS, RLS, RNS Radiative transfer model 2000-2013 Kato et al. (2013) 
CLASSr RNS, HFLS, HFSS, MRRO Blended product 2003-2009 Hobeichi et al. (2020) 
FLUXCOM RNS, HFLS, HFSS Machine learning 

ensemble 
1980-2013 Jung et al. (2019) 

FLUXNET RNS, HFLS, HFSS eddy covariance (204) 1997–2014 Pastorello et al. 
(2017) 

GEWEXSRB ALBS, RSS, RLS, RNS radiative transfer model 1984-2007 Stackhouse et al. 
(2011) 

GRDC MRRO gauge records (50) 1980–2010 Dai and Trenberth 
(2002) 

GRUN MRRO Reconstruction via 
machine learning 

1902-2014 Ghiggi et al. (2019) 

MODIS ALBS Bidirectional Reflectance 
Distribution function 

2000-2014 Schaaf and Wang 
(2015) 
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 376 

4.1 Comparison of air temperature and precipitation in meteorological datasets 377 

To better understand biases in the simulated snow cover, we first compare air temperature and 378 

precipitation from the three meteorological datasets with respect to CRU over the NH and HMA 379 

during the 1980-2014 period (Fig 3). Because the CRUJRA data is already bias-corrected to 380 

CRU temperature and precipitation, it exhibits very small biases in both variables in all regions. 381 

By comparison, both ERA5 and GSWP3W5 are colder during most of the months in the NH 382 

(Fig. 3a). The magnitude of the cold bias is larger in the mountainous than in the flat regions and 383 

larger in GSWP3W5 than in ERA5. Likewise, both ERA5 and GSWP3W5 have more 384 

precipitation than CRUJRA over the whole snow season. This difference is especially  385 

 386 

 387 

Figure 3. Bias in monthly mean air temperature (a and c) and precipitation (b and d) in the NH 388 
mountainous (solid line) and flat (dashed line) regions (a and b) and the HMA mountainous region (c and 389 
d) over the 1980-2014 period. Values shown at the top of each plot are the mean temperature or 390 

precipitation during Sep-May period for each dataset. 391 

 392 

pronounced in ERA5 in the mountainous regions during the fall and spring months (Fig. 3b). In 393 

HMA, the bias patterns in temperature and precipitation are similar to those for mountainous 394 

regions across the full NH. However, the magnitude of the cold bias (with respect to CRU) is 395 

https://doi.org/10.5194/egusphere-2025-1264
Preprint. Discussion started: 28 March 2025
c© Author(s) 2025. CC BY 4.0 License.



13 
 

larger in ERA5 than in GSWP3W5 (Fig. 3c). Because different reference datasets were used to 396 

bias-adjust precipitation in CRUJRA (CRU) and GSWP3W5 (GPCP), we also compare the 397 

monthly precipitation from CRU and GPCP in the above regions and over the same period. This 398 

analysis (not shown) indicates that the differences between CRU and GPCP are within 2 % and 399 

3 % for NH flat and mountainous regions respectively, but up to 21 % in HMA.  400 

 401 

4.2 Evaluation of SWE  402 

Large difference in SWE from the model runs using the CTL and SL12 parameterizations are 403 

limited to small areas near grid cells with land ice because the runs are forced by the same three 404 

sets of meteorological datasets, and there is no feedback in offline runs. Thus we only present 405 

results for SWE from the model runs using the SL12 parameterization. The SWE reference 406 

measurements (Section 3.2) indicate that for all choices of meteorological forcing, CLASSIC 407 

underestimates SWE in mountainous regions (Fig. 4a) and overestimates SWE in flat regions 408 

(Fig. 4b) over the 1980-2014 period. For both types of regions, the magnitudes of the biases 409 

increase as the snow season progresses. In the mountainous regions, the biases are similar for  410 

 411 

 412 

 413 

 414 

 415 

 416 

 417 

 418 

 419 

Figure 4. Annual and interannual evolution of bias, uRMSE, and correlation for modelled SWE in model 420 
runs using the SL12 parameterization forced by CRUJRA, ERA5, and GSWP3-W5E5 in (a) NH 421 
mountainous regions and (b) NH flat regions over the 1980-2014 period. 422 

 423 

GSWP3W5 and CRUJRA and slightly smaller for ERA5. In flat regions, GSWP3W5-SL12 has 424 

more than twice the SWE bias seen in either CRUJRA-SL12 or ERA5-SL12, which is mainly 425 

due to SWE overestimation in eastern NA and northern Europe (Fig. A1). While in mountainous 426 

regions the uRMSE increases nearly linearly from Dec. to May, in flat regions, uRMSE remains 427 

under 100 mm from Nov to April but then increases sharply during April and May. Overall, 428 

ERA5-SL12 outperforms the other two model runs with lower bias and better correlation in 429 

mountainous regions and it shows similar performance as CRUJRA-SL12 in flat regions.  430 

(a) (b) 
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Table 2. The seasonal mean SCF bias, uRMSE, and Pearson correlation coefficient (r) for the Control and 431 
SL12 simulations over the (a) NH mountainous regions (σtopo >200 m), (b) NH flat regions (σtopo <= 200 432 
m). The observed SCF from MODIS is used as the reference.  433 

(a) NH Mountain SON DJF MAM Annual 

Met-Scheme Bias uRMSE   r Bias uRMSE   r Bias uRMSE   r Bias uRMSE   R 

CRUJRA - CTL -0.01 0.08 0.55 0.06 0.08 0.24 0.10 0.12 0.45 0.04 0.13 0.59 

CRUJRA - SL12 -0.04 0.07 0.56 0.01 0.07 0.31 0.01 0.08 0.55 -0.01 0.09 0.62 

ERA5 - CTL 0.01 0.06 0.59 0.07 0.07 0.28 0.09 0.11 0.48 0.05 0.12 0.62 

ERA5 - SL12 -0.02 0.06 0.60 0.02 0.06 0.38 0.01 0.06 0.60 0.00 0.08 0.66 

GSWP3W5 - CTL -0.02 0.07 0.57 0.03 0.08 0.29 0.05 0.11 0.48 0.03 0.13 0.59 

GSWP3W5-SL12 -0.04 0.07 0.58 -0.02 0.07 0.35 -0.03 0.07 0.56 -0.02 0.09 0.64 

(b) NH Flat SON DJF MAM Annual 

Met-Scheme Bias uRMSE   r Bias uRMSE   r Bias uRMSE   r Bias uRMSE   r 

CRUJRA - CTL -0.02 0.07 0.57 0.02 0.05 0.20 0.09 0.12 0.44 0.03 0.11 0.59 

CRUJRA - SL12 -0.04 0.08 0.57 0.01 0.06 0.24 0.08 0.11 0.47 0.02 0.11 0.59 

ERA5 - CTL -0.02 0.07 0.58 0.01 0.05 0.24 0.07 0.09 0.50 0.02 0.10 0.61 

ERA5 - SL12 -0.04 0.08 0.58 0.00 0.05 0.27 0.06 0.09 0.52 0.01 0.10 0.61 

GSWP3W5 - CTL 0.00 0.08 0.57 0.02 0.06 0.19 0.10 0.13 0.41 0.04 0.13 0.58 

GSWP3W5-SL12 -0.02 0.08 0.57 0.01 0.06 0.23 0.09 0.13 0.45 0.03 0.12 0.58 

 434 

 435 

4.3 Evaluation of SCF 436 

4.3.1 NH regions 437 

Figure 5 shows the monthly mean SCF (area weighted) from all six simulations along with the 438 

MODIS and IMS observations over different regions. SCF from MODIS and IMS generally 439 

agree well with each other in all regions except for HMA, where IMS shows ~3 % - 6 % more 440 

SCF than MODIS in the winter months (Fig. 5g). In the NH, NA, and EA mountainous regions 441 

(Fig. 5a-5c and Table 2), both the CTL and the SL12 parameterizations underestimate SCF in the 442 

fall (SON), with the SL12 parameterization performing slightly worse than the CTL 443 

parameterization. However, during winter (DJF) and spring (MAM), the SL12 parameterization 444 

greatly outperforms the CTL parameterization for all three meteorological datasets. For example, 445 

in the NH mountains during the spring, the mean biases are 0.1, 0.09, and 0.05 with the CTL 446 

parameterization for model runs forced by CRUJRA, ERA5, and GSWP3W5 respectively; they 447 

are 0.01, 0.01, and -0.03 with the SL12 parameterization (Table 2a). The uRMSEs are 0.12, 0.11, 448 

and 0.11 with the CTL parameterization, and 0.08, 0.06, and 0.07 with the SL12  449 
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 450 

Figure 5. The monthly mean SCF from model runs using the Control (dashed line) and SL12 (solid line) 451 

parameterizations for NH, NA, and EA mountainous (σtopo ≥ 200 m, a-c) and flat (σtopo < 200 m, d-e) 452 

regions, and (g) shows the monthly mean SCF for the HMA mountainous region. The black lines 453 
represent observed SCF from MODIS (solid), IMS (dashed), and HMASR (dotted). 454 

 455 

parameterization; and the correlation coefficients are 0.45, 0.48, and 0.48 with the CTL 456 

parameterization, and 0.55, 0.60, 0.56 with the SL12 parameterization (Table 2a). On average for 457 

all three meteorological forcing choices, the annual mean bias, uRMSE, and correlation improve 458 

by 75 %, 32 %, and 7 % when evaluated with MODIS SCF observations over the NH 459 

mountainous regions. 460 

In flat regions (all domains), as expected, the performance is similar regardless of the 461 

parameterization with a 2-4 % SCF underestimation in the fall, but a 1-2 % and 6-10 % SCF 462 

overestimation during the winter and spring seasons, respectively (Fig. 5d-5f and Table 2b). 463 

Among the six simulations, ERA5-SL12 has the lowest annual bias (0.0) and uRMSE (0.08), and 464 

the highest correlation (0.66) in the NH mountainous regions, as well as in the flat regions 465 

(bias=0.01, uRMSE=0.1, and r=0.61) (Table 2).  466 

 467 

 468 
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 469 

 470 

 471 

 472 

 473 

 474 

 475 

 476 

 477 

 478 

 479 

 480 

 481 

 482 

 483 

  484 

 485 

 486 

 487 

Figure 6. Snow cover fraction from MODIS (a and b), SCF bias in model runs using the Control (c and 488 
d) and SL12 (e and f) parameterizations, and difference in SCF between SL12 and Control (g and h) 489 
during the winter (left) and spring (right) season.  490 

 491 

On the global scale, the spatial patterns of SCF bias are similar for all three meteorological 492 

forcing choices. Figure 6 shows an example of the spatial pattern in SCF bias from the model 493 

runs forced by ERA5 during the winter and spring seasons. Compared to observed SCF from 494 

MODIS, model runs tend to overestimate SCF in areas where SCF is less than 100 % in both the 495 

winter and spring seasons. In the winter, both parameterizations have areas with SCF 496 

underestimation, such as in the western NA mountainous areas, northern Europe, and some areas 497 

of Asia (Fig. 6c and 6e). In the spring, the CTL parameterization overestimates SCF in most NH 498 

regions except for some limited areas in western NA (Fig. 6d). The SCF overestimation is 499 

reduced in the run using the SL12 parameterization, and replaced with some SCF 500 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 
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underestimation, such as in the western NA mountains (Fig. 6f). Overall, the SL12 501 

parameterization produces less SCF and thus reduces the SCF overestimation found in the model 502 

runs using the CTL parameterization over all major mountain ranges across the globe (Fig. 6g 503 

and 6h).   504 

 505 

4.3.2 HMA region 506 

In HMA, large uncertainties have been found in SCF from the MODIS and IMS datasets (Hao et 507 

al., 2019; Orsolini et al., 2019), thus SCF from the HMASR dataset is also included as a 508 

reference along with MODIS and IMS. Results are only shown for the mountainous region (Fig. 509 

5g) because there are limited flat areas with snow cover (Fig. 1b and 1c). HMASR has a single 510 

peak in Feb., while MODIS, IMS, and all the model runs have peaks in both Jan. and Feb. Over 511 

this region, simulations using either parameterization exhibit large SCF overestimations during 512 

the winter and spring compared to all three reference datasets especially when forced by 513 

CRUJRA or ERA5 (Fig. 5g). Compared to SCF from HMASR, the mean biases are 0.30 and 514 

0.35 in CRUJRA-CTL and ERA5-CTL respectively during the winter (Table 3). In contrast, the 515 

model runs driven by GSWP3W5 have much lower SCF and smaller biases (Fig. 5g and Table 516 

3). Overall, the SL12 parameterization exhibits improved performance compared to the CTL 517 

parameterization. On average from all three meteorological forcing choices, the annual mean 518 

bias, uRMSE, and correlation improve by 48 %, 30 %, and 5 % when evaluated with HMASR 519 

SCF data over the HMA mountainous areas. 520 

Table 3. Same as Table 2 but for the HMA region. SCF from the HMASR dataset is used as the reference. 521 

 522 

In HMA, areas with high SCF (> 40 %) are mainly found along the western mountain ranges 523 

(e.g. Tian Shan, Hindu Kush–Karakoram, and western Himalayas) and southeast portion of the 524 

TP (Fig.7a-7c). SCF is less than 20 % in most of the interior TP, even during the winter (Fig. 7a). 525 

On average, maximum SCF occurs in winter in western HMA (i.e. Tian Shan and Hindu Kush–526 

Karakoram), but it occurs in spring in interior TP and southeast TP. Among the model runs using 527 

the CTL parameterization, there are significant SCF overestimations in most of HMA when 528 

forced by CRUJRA or ERA5 (Fig. 7d, 7e). The run forced by GSWP3W5 still overestimates 529 

SCF in the mountainous areas of western HMA but underestimates SCF in the interior TP and 530 

southeast of TP (Fig. 7f). In the model runs using the SL12 parameterization (Fig. 7g-7i), the 531 

HMA Mountain SON DJF MAM Annual 

Met-Scheme Bias uRMSE   r Bias uRMSE   r Bias uRMSE   r Bias uRMSE   r 

CRUJRA - CTL 0.02 0.12 0.35 0.30 0.15 0.31 0.20 0.17 0.39 0.13 0.21 0.42 

CRUJRA - SL12 -0.03 0.09 0.37 0.16 0.11 0.35 0.06 0.10 0.45 0.04 0.15 0.44 

ERA5 - CTL 0.05 0.12 0.43 0.35 0.14 0.36 0.23 0.15 0.40 0.16 0.22 0.45 

ERA5 - SL12 -0.01 0.09 0.45 0.22 0.11 0.42 0.08 0.09 0.51 0.06 0.15 0.48 

GSWP3W - CTL -0.06 0.08 0.40 0.08 0.14 0.39 0.01 0.12 0.44 0.00 0.14 0.45 

GSWP3W - SL12 -0.08 0.07 0.41 0.00 0.11 0.39 -0.08 0.08 0.48 -0.05 0.10 0.46 
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SCF overestimations are much reduced in the western mountainous areas while across the rest of 532 

the plateau the SCF underestimations are very similar for both parameterizations.  533 

 534 

 535 

 536 

 537 

 538 

 539 

 540 

 541 

 542 

 543 

 544 

 545 

 546 

 547 

Figure 7. The top panel shows SCF from HMASR for (a) winter, (b) spring, and (c) annual mean. The 548 
second and third panel shows SCF biases from model runs using the CTL (d-f) and SL12 (g-i) 549 
parameterizations forced by the three meteorological datasets respectively during spring. The bottom 550 
panel (j-k) shows the difference in SCF between the model runs using the SL12 and CTL 551 
parameterizations. 552 

 553 

4.4 Evaluation of other land surface variables 554 

Evaluation of other land surface variables (besides SCF and SWE) via AMBER scores (Section 555 

3.3) is shown in Fig. 8 for each of the six CLASSIC simulations. Model runs using the SL12 556 

parameterization have the best score for 101 of 1119 diagnostic tests while they have the worst 557 

score for only 16 of 119 diagnostic tests (Fig. 8c and 8d). CRUJRA-SL12 (ID=2) and ERA5-558 

SL12 (ID=4) have the highest overall scores for five radiation reference datasets (one RNS, two 559 

RSS, two RLS), and three surface albedo (ALBS) reference datasets with improvements ranging 560 

from 0.01 to 0.06 when compared to the runs with the lowest scores (Fig. 8b and 8c). The 561 

relatively large score differences in the interannual variability score (Siav) for net surface 562 

radiation (RNS) suggests improved interannual variability of net surface radiation when using 563 

the SL12 parameterization (Fig. 8b). For surface albedo, the relatively large differences are in the 564 

(a) (c) (b) 

(d) (f) (e) 

(g) (i) (h) 

(j) (l) (k) 

HK 

HM 

ITP 

TS 

SETP 
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spatial distribution score (Sdist), suggesting better characterization of the spatial pattern in surface 565 

albedo when using the SL12 parameterization. 566 

 567 

Figure 8. AMBER results for other land surface variables from the six model runs, (a) mean ensemble 568 
score, (b) maximum score difference among ensemble members, (c) ensemble member with the highest 569 
score, and (d) ensemble member with the lowest score. Comparisons are grayed out in panels (b–d) when 570 
the difference between the maximum and minimum scores is less than 0.01. Ensemble member IDs 571 
represent the following model runs: 1: CRUJRA-CTL, 2: CRUJRA-SL12, 3: ERA5-CTL, 4: ERA5-SL12, 572 
5: GSWP3W5-CTL, 6: GSWP3W5-SL12. 573 

Though GSWP3W5-SL12 (ID=6) has the lowest frequency of the model runs with the best 574 

scores (Fig. 8c), it has the highest overall performance for some of the heat fluxes datasets - one 575 

out of the three HFLS and two out of the three HFSS reference datasets. For surface runoff, 576 

model runs with the best scores are all forced by CRUJRA, while model runs with the worst 577 

scores are all forced by ERA5 (Fig. 8c and 8d).  578 

To isolate the impact of meteorological forcing data and SCF parameterization on these snow-579 

related variables, we also calculate AMBER scores for the three model runs separately for the 580 

SL12 (Fig. 9) and the CTL (Fig. A2) parameterizations. The results show that regardless of the 581 

parameterization, overall model runs forced by ERA5 (ID = 2) perform best for most radiation 582 

fluxes, while model runs forced by CRUJRA (ID = 1) perform best for the rest of the variables 583 

except for some heat fluxes where model runs forced by GSWP3W5 (ID = 3) perform best (Fig. 584 

9c). These are generally consistent with results shown in Fig. 8 with both parameterizations 585 

included, suggesting that the score differences among ensemble members are largely due to 586 

differences in the meteorological forcing. However, the overall scores with the SL12 587 

parameterization (Fig. 9a) are slightly larger for most variables than those with the CTL 588 

parameterization (Fig. A2a). Among the three model runs using the SL12 parameterization, 589 

ERA5-SL12 has the most (43/99) frequency in the model runs with the best scores (Fig. 9c), 590 

followed by CRUJRA-SL12 (38), with GSWP3W5-SL12 having the least frequency (18). 591 
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 592 

Figure 9. Same as in Fig. 8 except for the three model runs using the SL12 parameterization. Ensemble 593 
member IDs represent the following model runs: 1: CRUJRA-SL12, 2: ERA5-SL12, 3: GSWP3W5-594 
SL12. 595 

 596 

5. Discussion  597 

This study evaluates the SL12 SCF parameterization against the current default (CTL) SCF 598 

parameterization on snow simulation in CLASSIC. To account for uncertainties in the forcing 599 

data, three reanalysis-based meteorological datasets are used to drive the model. Below we 600 

discuss the possible factors contributing to biases in the simulated SWE and SCF including 601 

potential biases in the meteorological forcing datasets.  602 

 5.1 Impacts of meteorological forcing datasets on modelled SWE    603 

Evaluation based on measurements from snow course and airborne gamma data indicates that the 604 

magnitude of SWE bias and uRMSE seen in CLASSIC are comparable to those from other 605 

gridded SWE products and LSMs (Brown et al., 2018; Mortimer et al., 2024; Cho et al., 2022) 606 

intended to represent historical snow conditions. However, for all three choices of 607 

meteorological forcing SWE is underestimated in mountainous regions (Fig. 4a) and 608 

overestimated in flat regions (Fig. 4b) throughout the snow season (with subsequent impacts on 609 

SCF). Naively, the bias-adjustments applied to temperature and precipitation in both the 610 

CRUJRA and GSWP3W5 forcing data might be expected to result in more accurate simulations. 611 

Yet among the three choices of forcing we used, the unadjusted ERA5 data yielded the lowest 612 

bias when evaluating the simulated SWE in both mountainous and flat regions (Fig. 4, Fig. A1). 613 

In mountain regions, this discrepancy may result because the CRU and GPCP data used to adjust 614 

the precipitation values are biased towards locations with less precipitation (e.g. outside of 615 

regions with orographic features; e.g. Nijssen et al., 2001; Adler et al, 2003; Shi et al., 2017). 616 

Mountain precipitation underestimation was also linked to negative SWE biases based on 617 
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precipitation observations from the Snowpack Telemetry stations over western US (Cho et al. 618 

2022).  619 

In NH flat regions, precipitation values from CRU and GPCP are expected to be more accurate 620 

than in mountainous regions (Adler et al., 2003), so it is less clear why GSWP3W5 has a much 621 

larger SWE bias despite having a precipitation bias similar to ERA5. The fact that GSWP3W5 is 622 

colder in flat regions compared to the other two forcings could play a role (Fig. 3a). This may 623 

reduce its ability to simulate mid-season ablation events (e.g., Brown et al., 2006; Slater et al., 624 

2001) and/or alter the timing and location of snowfall. The reason that GSWP3W5 is colder than 625 

CRUJRA is also not immediately clear since both products use CRU TS4 for bias-adjusting their 626 

temperature (see Section 2.3.2). Differences between the interpolation and bias-adjustment 627 

methods may be responsible for the differences since they are more complex for GSWP3W5 (see 628 

Cucchi et al., 2020 and Weedon et al., 2010) than CRUJRA (Harris, 2023). For example, a 629 

constant lapse rate of 6.5 K km-1 was applied to temperature correction in GSWP3W5 but not in 630 

CRUJRA.  631 

These results highlight that there is uncertainty in the accuracy of both temperature and 632 

precipitation forcing even when bias-adjusted to observations. These uncertainties can propagate 633 

to uncertainty in simulated SWE directly through precipitation amounts or in the case of 634 

temperature through phase partitioning of rainfall versus snowfall or direct melt. Even with 635 

perfectly constrained bias-adjustments for temperature and precipitation individually, there may 636 

still be spread in simulated SWE stemming from uncertainties in the joint distribution of 637 

temperature and precipitation that determines when snowfall occurs. Although measurements 638 

from snow course and airborne gamma data used in this study can better sample the subgrid-639 

scale variability than a single-point measurement, we acknowledge that there are still 640 

uncertainties in our evaluation results, e.g. in situ sites may be biased towards locations with 641 

more snow cover. 642 

5.2 Factors contributing to residual bias in modelled SCF 643 

Although SCF overestimation in the mountainous regions is much reduced by the SL12 644 

parameterization compared to the CTL parameterization (Fig. 5a – 5c and 5g), there are still 645 

areas with notable SCF biases. For example, much of the western NA mountainous areas have 646 

negative biases during the spring with the SL12 parameterization (Fig. 6d and 6f). Furthermore, 647 

in flat areas, all model runs overestimate SCF (Fig. 5d – 5f). These remaining SCF biases may be 648 

at least partly attributable to SWE underestimation in mountainous regions and SWE 649 

overestimation in flat regions (Fig. 4). The fact that in flat regions, there are larger SWE biases 650 

(Fig. 4b) and correspondingly larger SCF overestimation (Fig. 5d – 5f) in the model runs forced 651 

by GSWP3W5 supports this argument (see Section 5.1). Below we present some evidence on the 652 

link between differences in meteorological forcing datasets and choices of parameter values in 653 

the SL12 parameterization and the bias in modelled SCF.  654 

Overall NH performance for model runs driven by ERA5 is comparable or slightly better than 655 

the runs driven by CRUJRA in terms of simulated SWE and SCF (Fig. 3, Fig. 5, and Table 2), 656 

while model runs driven by GSWP3W5 are worse everywhere except for HMA. In HMA, there 657 
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is significant SCF overestimation in model runs forced by CRUJRA and ERA5, while model 658 

runs forced by GSWP3W5 have comparable SCF to observations (Fig. 5g and Table 3). For 659 

model runs forced by ERA5, this is consistent with the cold temperature bias and large 660 

precipitation overestimation in ERA5 (Fig. 3c and 3d). However, CRUJRA and GSWP3W5 661 

exhibit similar biases in temperature and precipitation (Fig. 3c and 3d), yet model runs forced by 662 

them have contrasting SCF biases (Fig. 5g). Therefore, biases in temperature and precipitation 663 

cannot explain the SCF biases here. Instead, we found that the number of wet days (days with 664 

precipitation >= 0.1 mm) differs in each of the three datasets, especially in the HMA region (Fig. 665 

10). Figure 10 shows that on average ERA5 has near-daily precipitation events in the 666 

mountainous areas (e.g. Tian Shan, Hindu Kush–Karakoram, and Himalayas) and southeast of 667 

TP, while GSWP3W5 has the fewest wet days over the whole HMA region, especially over the 668 

interior TP. The number of wet days in CRUJRA falls between the other two. This is consistent 669 

with differences in the SCF annual cycles (Fig. 5g) and the SCF bias patterns (Fig. 7) found 670 

among the three sets of model runs, suggesting that the different number of wet days in the 671 

forcings contributes most to the difference in modelled SCF in this region. This conclusion is 672 

also consistent with findings in previous studies (Liu et al., 2022; Orsolini et al., 2019), which 673 

suggested that excessive snowfall in ERA5 contributes to overestimation of SND, SWE, and 674 

SCF across HMA. In CLASSIC, the large number of wet days in ERA5 would lead to prolonged 675 

periods with fresh snow and therefore high snow albedo. In coupled simulations this could lead 676 

to or reinforce an existing cold bias. GSWP3W5 also has a smaller number of wet days in some 677 

other regions of the globe, such as the middle to high latitudes of NA and eastern Siberia (not 678 

shown). 679 

 680 

Figure 10. The monthly mean number of wet days (days with total Pr >= 0.1 mm) in (a) CRUJRA, (b) 681 
ERA5, and (c) GSWP3W5 during the main snow season (Sep – May) in HMA over the 2005-2014 682 
period. 683 

 684 

Besides biases in the meteorological datasets, the choice of parameter values in the SL12 685 

parameterization can also contribute to uncertainties in modelled SCF. As illustrated in Swenson 686 

and Lawrence (2012, their Fig. 7), choosing a larger kacc parameter in Eq. (1) would result in 687 

faster SCF increase with SND during accumulation events. All the previously discussed 688 

simulations have used the default value of 0.1 for this parameter. We also performed sensitivity 689 

experiments where the kacc parameter was changed to 0.18 and 0.26. In these simulations, SCF 690 

increases faster with SND especially in the fall, thereby resulting in higher SCF over NH 691 

mountainous regions during that time of year. Notably, increasing kacc to 0.26 produces less 692 
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biased SCF values during the fall (similar to those seen in the CTL simulations) while still 693 

maintaining the improvements already presented during winter and spring (Fig. A4).     694 

Likewise, the ablation portion of the SL12 parameterization (Eq. (2)) can be altered via the Nmelt 695 

parameter, which controls the rate at which SCF decreases as a function of SND. SCF decreases 696 

faster with (normalized) SND in mountainous areas (small Nmelt) than flat areas (large Nmelt, Fig. 697 

9 in Swenson and Lawrence, 2012). We adjusted the Nmelt parameter by increasing the numerator 698 

in Eq. (3) from 200 to 300, thereby increasing the Nmelt value in mountain regions for the same 699 

value of sub-grid topographic variability and resulting in slower SCF decrease. Results of the test 700 

run show reduced SCF bias in the NA mountains in the spring compared to simulations with the 701 

default Nmelt value (Fig. A5).     702 

The adjustments to kacc and Nmelt parameters described above provide ways to fine-tune the 703 

agreement in simulated SCF with observations. However, because none of the three 704 

meteorological forcing datasets used in this study are exempt from biases, there is a limit to how 705 

well optimal parameter values can be chosen for use in CLASSIC.   706 

 707 

6. Conclusions 708 

Our results demonstrate that implementing the SL12 parameterization in CLASSIC improves 709 

simulated SCF in mountainous regions. This confirms that the lack of topographic dependency in 710 

the current default parameterization is at least partly responsible for the SCF overestimation and 711 

cold bias in the coupled model configuration, CanESM5 (Lalande et al., 2021; Swart et al. 2019; 712 

Sigmond et al., 2023). The improved simulation of SCF also improves the simulation of surface 713 

albedo, which in turn leads to improved simulation of the surface radiation, energy fluxes, and 714 

water cycle in CLASSIC.  715 

The results also demonstrate that the choice of meteorological forcing data can have a large 716 

impact on snow simulation in offline LSM runs. Based on our analysis, we suggest that at least 717 

part of the SWE underestimation in mountainous areas and SWE overestimation in flat areas can 718 

be linked to relative biases in temperature and precipitation from the meteorological forcing 719 

datasets. The SWE biases then propagate to biases in modelled SCF. In addition, we highlighted 720 

that bias-adjustment methods that improve temperature or precipitation separately may not result 721 

in more accurately simulated SWE, with consequences for downstream components of the water 722 

and energy cycles related to snow. These meteorological forcing datasets are regularly used to 723 

drive LSMs in various projects, such as the Global Carbon Project and ISIMIP, but for snow 724 

simulations it is important to better understand how inaccuracies in temperature and precipitation 725 

can propagate to errors in modelled SWE and SCF.  726 

Based on the evaluation results presented in this study along with preliminary test results in fully 727 

coupled CanESM runs, the SL12 parameterization has been adopted in CLASSIC and will be 728 

used in CanESM simulations for CMIP7 submission. Future work will focus on the evaluation of 729 

the SL12 parameterization in fully coupled CanESM simulations where a full analysis of 730 

feedbacks will be possible.  731 
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1102 Appendix A: 

1105 

Figure A1. March SWE bias relative to in situ measurements over the 1980-2014 period from model runs 1106 
forced by each of the three meteorological forcings.  1107 
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 1113 

 1114 

Figure A2. AMBER results for other land surface variables from three model runs using the CTL 1115 
parameterization, (a) mean ensemble score, (b) maximum score difference among ensemble members, (c) 1116 
ensemble member with the highest score, and (d) ensemble member with the lowest score. Ensemble 1117 
member IDs represent the following model runs: 1: CRUJRA-CTL, 2: ERA5-CTL, 3: GSWP3W5-CTL. 1118 
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 1134 

 1135 

 1136 

Figure A3. The difference in SCF between SL12 and Control parameterization during the fall in model 1137 
runs using (a) kacc=0.1, and (b) kacc=0.26 for the SL12 parameterization. 1138 
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 1158 

 1159 

 1160 

Figure A4. (a) Spring SCF bias relative to MODIS using adjusted Nmelt parameter (numerator=300 in Eq. 1161 
3), and (b) difference in spring SCF in model runs using adjusted and default (numerator=200 in Eq. 3) 1162 
Nmelt parameter. 1163 

(a) (b) 

https://doi.org/10.5194/egusphere-2025-1264
Preprint. Discussion started: 28 March 2025
c© Author(s) 2025. CC BY 4.0 License.


